Scheduling and capacity estimation in LTE

Olav Østerbø, Telenor CD (Corporate Development)

ITC-23, September 6-8, 2011, San Francisco
Agenda

Introduction
Obtainable bitrate as function of SINR
Radio channel propagation model
Radio signal fading model
Analytical models for LTE radio network performance
Numerical examples
Conclusions
Introduction

LTE is the new, (following up of HSPA) mobile access technology specified by 3GPP:

- Flat all-IP architecture
- Flexible in frequency bands (700 MHz-2.6 GHz)
- Flexible carrier bandwidths (1.4, 3, 5, 10, 15 and 20 MHz)
- Increased spectrum efficiency based on OFDMA for uplink, SC-FDMA for downlink
 - Typical cell capacity (20 MHz bandwidth), 20 – 40 Mbps for downlink link and 5 – 15 Mbps for uplink
- Momentum in the industry, building on current investments in the GSM/UMTS
Obtainable bitrate as function of SINR

Bitrate function $B = B(SINR)$

- Upper bound Shannon: $B/f = \log_2(1 + SINR)$
- Discrete; B/f based on CQI-table (3GPP TS 36.213) and Linear relation between SINR[dB] and CQI-index
- Approximate/Truncated modified version of Shannon's formula:
 $B/f = \text{MIN}[T, C \log_2(1 + \gamma \cdot SINR)]$

<table>
<thead>
<tr>
<th>CQI index</th>
<th>modulation</th>
<th>code rate x 1024</th>
<th>efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>out of range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>QPSK</td>
<td>78</td>
<td>0.1523</td>
</tr>
<tr>
<td>2</td>
<td>QPSK</td>
<td>120</td>
<td>0.2344</td>
</tr>
<tr>
<td>3</td>
<td>QPSK</td>
<td>193</td>
<td>0.3770</td>
</tr>
<tr>
<td>4</td>
<td>QPSK</td>
<td>308</td>
<td>0.6016</td>
</tr>
<tr>
<td>5</td>
<td>QPSK</td>
<td>449</td>
<td>0.8770</td>
</tr>
<tr>
<td>6</td>
<td>QPSK</td>
<td>602</td>
<td>1.1758</td>
</tr>
<tr>
<td>7</td>
<td>16QAM</td>
<td>378</td>
<td>1.4766</td>
</tr>
<tr>
<td>8</td>
<td>16QAM</td>
<td>490</td>
<td>1.9141</td>
</tr>
<tr>
<td>9</td>
<td>16QAM</td>
<td>616</td>
<td>2.4063</td>
</tr>
<tr>
<td>10</td>
<td>64QAM</td>
<td>466</td>
<td>2.7305</td>
</tr>
<tr>
<td>11</td>
<td>64QAM</td>
<td>567</td>
<td>3.3223</td>
</tr>
<tr>
<td>12</td>
<td>64QAM</td>
<td>666</td>
<td>3.9023</td>
</tr>
<tr>
<td>13</td>
<td>64QAM</td>
<td>772</td>
<td>4.5234</td>
</tr>
<tr>
<td>14</td>
<td>64QAM</td>
<td>873</td>
<td>5.1152</td>
</tr>
<tr>
<td>15</td>
<td>64QAM</td>
<td>948</td>
<td>5.5547</td>
</tr>
</tbody>
</table>
Radio channel propagation model

Signal-to-noise ratio: \[\text{SINR} = \frac{P_w G}{N} \]

- \(P_w \) sending power

Path loss (model): \[G = 10^{L/10} \quad L = C - A \log_{10}(r) + X_t \]

- \(C \) and \(A \) constants, \(X_t \) shadowing usually assumed to be normal distributed with zero mean and given standard deviation

Noise \(N = N_{\text{int}} + N_{\text{ext}} \) sum the internal (or own-cell) noise power and is the external (or other-cell) interference.
Radio signal fading model

SINR on the form: \(S_t / r^\alpha h(\lambda) \)

Stochastic part of SINR: \(S_t = X_{\text{ln}} X_e \)

Slow fading (shadowing): Lognormal \(X_{\text{ln}} \)

Fast fading: Rayleigh, i.e. neg. exp. distributed \(X_e \)

\(S_t \): Suzuki distributed with CDF

\[
\tilde{S}_{su}(x) = \int_0^\infty e^{-xt} s_{\text{ln}}(t) dt = \frac{1}{\sqrt{2\pi \sigma}} \int_0^\infty e^{\frac{-t^2}{2\sigma^2}} dt
\]

Truncated version:

\[
\tilde{S}_{su}(x,T) = \frac{1}{\sqrt{2\pi \sigma}} \int_0^T e^{\frac{-t^2}{2\sigma^2}} dt = \frac{1}{2} \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} x^k e^{-\frac{k^2\sigma^2}{2}} \text{erfc}\left(\frac{k\sigma}{\sqrt{2}} + \frac{\ln(x/T)}{\sigma\sqrt{2}}\right)
\]
Analytical models for LTE radio network performance

- Spectrum efficiency through the bit-rate distribution per Recourse Block (RB) for users that are either randomly or located at a particular distance in a cell.

- Cell throughput/capacity and fairness by taking the scheduling into account.
 - Scheduling based on metrics which depends (only) on own SINR and distance
 - Specific models for the common (basic) scheduling algorithms, Round Robin, Proportional Fair and Max-SINR.

- Estimation of the capacity usage for GBR sources in LTE
 - Non-persistent allocation, i.e. allocation every TTI to obtain GBR rate

- Cell throughput/capacity for a mix of GBR and Non-GBR (greedy) users
Input parameters to numerical examples

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Numerical values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth per Resource Block</td>
<td>180 kHz=12x 15 kHz</td>
</tr>
<tr>
<td>Total Numbers of Resource Blocks</td>
<td>100 RBs</td>
</tr>
<tr>
<td>Distance-dependent path loss. (Taken from a 3GPP document)</td>
<td>(L = C + 37.6 \log_{10}(r)), (r) in kilometers and (C = 28.1 \text{ dB for 2GHz})</td>
</tr>
<tr>
<td>Lognormal Shadowing with standard deviation</td>
<td>8 dB (in most of the cases)</td>
</tr>
<tr>
<td>Rayleigh fast fading</td>
<td></td>
</tr>
<tr>
<td>Noise power at the receiver</td>
<td>-101 dBm</td>
</tr>
<tr>
<td>Total send power</td>
<td>46.0 dBm=(40W)</td>
</tr>
<tr>
<td>Radio signaling overhead</td>
<td>3/14</td>
</tr>
</tbody>
</table>

ITC-23, September 6-8, 2011, San Francisco
Mean throughput per RB as function of cell radius

Suzuki distributed fading, 2GHz frequency and $\sigma=0$dB, 2dB, 5dB, 8dB, 12dB from below.

Located at cell edge

Random location

Throughput per RB drops for large cells. Approx 0.2 Mbit/s for 2km cell and 0.05 Mbit/s at cell edge with 8dB shadowing.
Multiuser gain as function of cell radius

2GHz frequency, 100 RBs, fading Susuki distributed with shadowing $\sigma=8$ dB, number of users $=1, 2, 3, 5, 10, 25, 100$ from below.

Multiuser gain very large for Max-SINR. PF doubles cell throughput compare to RR for cell of 2 km and 25 users.
Mean Bitrate for a user located at cell edge as function of cell radius.

Max-SINR shows very poor cell edge performance

Scheduling: RR, PF and Max-SINR scheduling algorithm, 2GHz frequency and 100 RBs
Mean cell throughput for 10 users scheduled according to PF and a GBR user

GBR rates of less than 1 Mbit/s does not reduce the overall throughput very much. GBR rates larger than 1 Mbit/s is not recommended.

GBR of 3.0, 1.0, 0.3, 0.1 Mbit/s using non-persistent scheduling, for 2 GHz and 100 RB and Suzuki distributed fading with std. $\sigma=8$dB.
Conclusions

• The two most important factors for the radio performance in LTE are fading and attenuation due to distance.

• Numerical examples for LTE downlink shows results which are reasonable;
 - In the range 25-50 Mbit/s for 1 km cell radius at 2GHz with 100 RBs.
 - Multiuser gain is large for the Max-SINR algorithm but also the PF algorithm gives relative large gain relative to plain RR.
 - The Max-SINR has the weakness that it is highly unfair in its behaviour. (Not recommended to use in real operation.)

• The usage of GBR with high rates may cause problems in LTE due to the high demand for radio resources if users have low SINR i.e. at cell edge.
 - GBR rate limited to at most 1 Mbit/s per user?