
Traffic Engineering for Multiple Spanning Tree

Protocol in Large Data Centers

HO Trong Viet, Yves Deville, Olivier Bonaventure, Pierre Francois

{trong.ho, yves.deville, olivier.bonaventure, pierre.francois}@uclouvain.be

ICTEAM, Université catholique de Louvain (UCL), Belgium

Abstract—The size of the capacity of data centers have been
growing significantly during the last years. Most data centers
rely on switched Ethernet networks. A drawback of the Ethernet
technology is that it relies on the spanning tree protocol (or
variants of it) to select the links that are used to forward
packets inside the data center. In this paper we propose a
Constrained-Based Local Search optimization scheme that is able
to efficiently compute the optimum spanning tree in large data
center networks. Our technique exploits the division of the data
center network in VLANs. We evaluate its performance based on
traffic matrices collected in data center networks and show good
improvements compared to the standard spanning tree protocol
with up to 16 VLANs.

Index Terms—Traffic Engineering, Multiple Spanning Tree
Protocol, Combinatorial Optimization, Data center traffic, Local
search.

I. INTRODUCTION

Data centers are now a key part of the Internet. Their

number and their size are growing quickly. Some reports [18],

[20], [21] indicate that there are data centers containing up to

10K servers and some speculate that data centers could contain

100K servers or more. Data centers are used for various

purposes. Some data centers are mainly used to perform

computation while others are mainly used to provide Internet

services. Many data centers support various applications at

the same time and each application runs on a set of virtual

machines that are distributed on physical servers.

From a networking viewpoint, data centers heavily rely on

switched Ethernet networks. Servers are typically attached

by using one or more Gigabit Ethernet interfaces to top of

the rack switches that are connected to aggregation switches

by using one or more 10 Gbps Ethernet links. These aggre-

gation switches are then connected by using one or more

10 Gbps Ethernet links to core switches that are attached

to routers when Internet access is required. The switched

Ethernet networks used in data centers are redundant to

enable recovery in case of link or switch failure. However,

currently deployed Ethernet switches can not directly use a

mesh of links and need to use variants of the Spanning Tree

protocol to restrict the Ethernet network to a tree rooted

on, typically a core, switch. Several variants of the spanning

tree protocol are used. The first standard, IEEE 802.1d [9],

enables switches to compute a single spanning tree over a

large network. The rapid spanning tree protocol [10] is an

extension to 802.1d that enables switches to converge quickly

to an alternate spanning tree in case of link failures. 802.1d is

largely used in campus networks. However, its major drawback

is that it disables the links that do not belong to the selected

spanning tree. This is potentially a waste of resources since

these links exist in the network. Fortunately, large Ethernet

networks such as data center networks are logically divided

in several Virtual Local Area Networks (VLANs). VLANs

are mainly used to isolate one application or one data center

customer from the others. The servers (or virtual machines)

that belong to a given VLAN can only communicate with

the other servers that belong to the same VLAN. A switched

Ethernet network can contain up to roughly 4000 different

VLANs. The Multiple Spanning Tree Protocol(MSTP) [11]

is an extension to the Spanning Tree Protocol that allows

switches to compute several spanning trees over a single

physical topology. The utilization of multiple spanning tree

enables a network operator to spread different VLANs over

different spanning trees that use different physical links and

switches. Networks that implement the MSTP protocol are

typically able to use more links than networks using a single

spanning tree. In practice however, it should be noted that

most implementations of MSTP can only compute up to 16

different spanning trees, and map each VLAN onto one of

these spanning trees.

Constraint Programming (CP) [14] and Constraint-Based

Local Search (CBLS)[13] are well suited for solving complex

combinatorial problems. COMET [13] is an object-oriented

language with several innovative modeling and control abstrac-

tions for CP and CBLS. In COMET, some classical problems

can be modeled in only about a dozen lines of code. We chose

a local search approach implemented in COMET for solving

this traffic engineering (TE) problem.

In this paper, we propose a Local Search Algorithm for

MSTP (LSA4MSTP), which guides the MSTP to select a good

set of spanning trees for a given set of traffic demand matrices.

The remainder of this paper is organized as follows.

We first present the related works in section II. We define

the problem formulation in section III. Next, we present our

local search algorithm with the techniques for speeding up the

search in section IV. Our evaluation is presented in section V

with an analysis of the experimental results, and we conclude

the paper in Section VI.

II. RELATED WORKS

There exist four main approaches to deal with the TE

for MSTP. First, several MSTP optimization techniques such

23978-0-9836283-0-9 c© 2011 ITC

This paper was peer reviewed by subject matter experts for publication in the Proceedings of ITC 2011

as [1], [2], [3] aimed to map a set of VLANs to a given

number of spanning trees. Second, [4] has proposed a multi-

objectives meta-heuristic ensuring the load balancing of the

Metro Ethernet using MSTP by mapping a set of flows to a set

of given spanning trees. Third, the construction algorithm [5]

addresses the TE problem for the US network with 12 vertices

and 17 links by building source-based multiple spanning trees

(construct a spanning tree for each of the given source nodes).

Last, [6], [7] advocated for solving the TE for MSTP by

finding the set of spanning trees in the metro domain described

by customer traffic demands and given network topology. In

this paper, we follow the same approach as in [6], [7] but

we aim to find solutions for large data center networks with

hundreds of switches instead of small networks with dozen

switches as in the state-of-the-art techniques.

Our previous work in [12] considered the traffic engineering

problem for the STP 802.1d [9] in switched Ethernet networks.

We proposed a local search algorithm using spanning tree

neighborhood instead of link cost neighborhood. In this paper,

we extend our local search proposed in [12]. We introduce new

heuristics to cope with large data centers and many VLANs

(spanning trees). In addition, the topologies and traffic demand

matrices of current data centers mentioned in [18] are used for

evaluating the performance of our algorithm.

III. PROBLEM FORMULATION

Our Ethernet network is modeled as an undirected graph

G = (N,E), where N is the set of nodes (switches) and

E is the set of links between nodes. Each link (i, j) ∈ E
has a bandwidth denoted by BW [i, j] (note that BW [i, j]
= BW [j, i]). When link bundles are used between switches,

we consider each bundle as a single link having the band-

width of the bundle. Let V ={V1, V2, ..., Vk} be the set of k
given VLANs in the network (each VLAN is a connected

component of G represented by Vr ⊆ N ∀r ∈ [1..k]) and

TD={TD1, TD2, ..., TDk} be the set of k traffic demand ma-

trices. TDr[i, j] (r=1, 2, ..., k; i, j ∈ Vr), represents the traffic

that switch i sends to switch j. Let W={W1,W2, ...,Wk} be

the set of link weight matrices for the k given VLANs. We call

MST (G, V,W) the set of k spanning trees ST1(G, V1,W1),
..., STk(G, Vk,Wk) obtained by the Multiple Spanning Tree

Protocol [11] on graph G, with set of VLANs V and set of

link weight matrices W . The Ethernet switching problem is

defined as follows: for all TDr[i, j] > 0 (r=1, 2, ..., k; i, j
∈ Vr), distribute the traffic demand over unique path from i
to j in STr(G, Vr,Wr).

Assume L[i, j] (i, j ∈ N) denotes the load (sum of traffic

flow) on the link (i, j). For the computation of L[i, j], the

traffic flow is directed (L[i, j] �= L[j, i]).
The utilization of a link (i, j) is the ratio between its load

and its bandwidth:

U [i, j] = L[i,j]
BW [i,j] (i, j ∈ N).

The link utilization is also directed. The link (i, j) is over-

loaded if its load is greater than its bandwidth (U [i, j] > 1 or

U [j, i] > 1).

In this work, our goal is to find the optimal (best possible)

set of link weights matrices W ∗ minimizing the maximal

utilization:

Umax = max{max(U [i, j], U [j, i]) | (i, j) ∈ E}.

The formulation of this problem is the following:

Input: Graph G = (N,E), set of k VLANs V , bandwidth

matrix BW , set of k traffic demand matrices TD
Output: Set of link weights matrices W ∗ such that

MST (G, V,W ∗) yields k spanning trees minimizing Umax

There are many possible QoS objectives for this traffic engi-

neering problem: minimization of the maximal link utilization,

minimization of the network delay, fault tolerance, etc. In this

work, we start with the popular objective of minimizing the

maximal utilization because this is the most important and the

most visible objective. We will take into account the other

objectives in our further work.

This problem is an expansion of the Spanning Tree Protocol

Optimization in [12]. Its search space is exponential. It is too

complex to be solved with exact methods even for reasonable

size instances. In this paper, we use a local search algorithm

for achieving a good approximation of this optimization prob-

lem.

IV. MSTP OPTIMIZATION USING LOCAL SEARCH

The MSTP creates the spanning trees based on two param-

eters: the switch IDs and the link weights. The weight of a

link is an integer number in [1..216−1]. Suppose that we have

k VLANs and each VLAN consists of all the switches in the

network. Even if we do not consider the choices of root for

each spanning tree, the size of the search space if we do a

search on link weights is (216 − 1)k.m (with m the number

of links). In addition, it is difficult to control the change of

link weights on the spanning tree. Another possibility is to

search the space of spanning trees and at the end to generate

the link weights from the obtained spanning trees. Of course

the generated link weights are such that MSTP will provide

the obtained spanning trees. This method reduces significantly

the size of the search space to
(

m
n−1

)k
(with n the number of

switches). This is the solution chosen in this paper.

Local Search (LS) is a powerful method for solving com-

putational optimization problems such as the Vertex Cover,

Traveling Salesman, or Boolean Satisfiability. The advantage

of LS for these problems is its ability to find an intelligent

path from a low quality solution to a high quality one in a

huge search space. This can be done by iterating a heuristic of

exploration to the neighborhood solutions [13]. So, we choose

a local search approach on the spanning tree space for solving

this problem. In this section, we first present an overview of

our local search algorithm called LSA4MSTP (Local Search

Algorithms for the Multiple Spanning Tree Protocol problem).

Then, we describe the algorithms and the techniques allowing

to speed up the search.

24 Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011)

Algorithm 1 Pseudo-code for LSA4MSTP

1: MST = getInitialMST(G, V)

2: MST ∗= MST
3: U∗

max = getMaxUtilization(MST,BW, TD)

4: while time exec < time windows do

5: (smax, tmax) = getMaxCongestedLink(MST)

6: selected vlan=selectVLAN(MST, smax, tmax)

7: (s0, t0)= getRemovedLink(MST, selected vlan,
smax, tmax)

8: (sI , tI) = getAddedLink(MST, selected vlan, s0, t0)

9: MST= replaceEdge(MST, selected vlan, s0, t0, sI , tI)

10: Umax = getMaxUtilization(MST,BW, TD)

11: if Umax < U∗

max then

12: U∗

max = Umax

13: MST ∗ = MST
14: end if

15: end while

16: W ∗ = generateLinkWeights(G,MST ∗)

A. Algorithm description

Algorithm 1 is an extension of our algorithm LSA4STP in

[12]. It provides the pseudo-code of our local search algorithm.

We aim to find a good solution in the spanning tree search

space by moving from one solution to a neighbor solution.

At each iteration, we try to replace one edge in one of the

k spanning trees to reduce Umax. The steps of LSA4MSTP,

according to the pseudo-code, are:

• Line 1: The method getInitialMST (G, V) returns an

initial solution (k spanning trees) for the local search

algorithm. We simply simulate the MSTP to compute

this initial solution. In this computation, we use the link

weights for each VLAN as the 802.1d [9] cost by default.

• Line 2 and Line 3: We store the initial solution obtained

with 802.1s as the best solution at the start of the search.

The method getMaxUtilization(MST,BW, TD) re-

turns Umax after computing the utilization of each links

in MST .

• Line 4: We use the time window as the termination

criteria. The choice of time windows depends on the test

size (number of nodes and number of links).

• Line 5-7: At each search iteration, we first try to find

the most congested link (smax, tmax) (Line 5). Then, we

select a VLAN selected vlan that contains (smax, tmax)
(Line 6). An edge (s0, t0) in selected vlan will be

chosen to be removed (Line 7). We describe this task

in section IV.A.1.

• Line 8: Section IV.A.2 describes the choice

of the replacing edge (sI , tI) in the method

getAddedLink(MST, selected vlan, s0, t0). A new

spanning tree for selected vlan is created by replacing

(s0, t0) with (sI , tI).
• Line 9: An update of the link loads is performed when

the edge (s0, t0) is replaced by (sI , tI). The speeding

up technique for computing the link loads is depicted in

section IV.B.2.

• Line 10-14: If the new Umax is less than the best known

U∗

max, we store this solution as the best one.

• Line 16: the method generateLinkWeights
(G,MST ∗) generates k link weight matrices so

that 802.1s protocol [11] produces exactly the k
spanning trees in MST ∗. This link weight generation is

described in section IV.A.3.

The search process from line 5 to line 14 is iterated until the

execution time reaches the time window (Line 4).

1) Removing an edge: In each search iteration, we try to

relieve the most congested link (Umax) of its load by replacing

an edge in the spanning tree containing it. To determine which

edge from which VLAN to be replaced, LSA4MSTP extends

from the heuristic in [12]. Let (smax, tmax) be the most

congested oriented link, the key decision of this heuristic is to

select one of the VLANs containing (smax, tmax) to do the

replacement. In the method selectV LAN(MST, smax, tmax)
(Line 6 - Algorithm 1), we create a set SV of VLANs that

contains (smax, tmax). We assign to each VLAN in SV a

probability to be selected based on its load on (smax, tmax).
The probability for a vlan ∈ SV to be selected vlan is:

pr[vlan] = Lvlan[smax,tmax]∑
k

i=1
Li[smax,tmax]

. Obviously,
∑

i∈SV pr[i] = 1.

This strategy can find a balance between greedy

search and unexplored neighborhood. From selected vlan,

we can assume that the congestion is caused by the

traffic coming from the subtree of the spanning tree

STselected vlan dominated by smax. Next, the method

getRemovedLink(MST, selected vlan,smax, tmax) (Line

7- Algorithm1) uses the heuristic described in [12] to deter-

mine an edge (s0, t0) to be removed from the set of edges

containing (smax, tmax) and all the edges belonging to the

subtree dominated by smax. The edges closer to the root have

a higher probability to be removed.

2) Adding an edge: After having removed (s0, t0) from

STselected vlan, we obtain two separate trees that must be

reconnected with a new edge. Our objective is to have more

bandwidth and a less congested solution. We consider two

criteria for choosing an edge to be added to form the new

spanning tree. First, we call SA the set of all the edges that join

the two separate trees. Second, we consider h edges having

the highest remaining bandwidth from SA. Next, we compute

the resulting Umax when adding each of these h edges. The

edge (sI , tI) offering the minimal value of Umax is selected

to be added into STselected vlan.

This heuristic differs from [12] as an edge can belong to

many spanning trees. Therefore, we can consider only the

highest remaining bandwidth edges instead of the highest

bandwidth edges.

We also use tabu search [15] - a heuristic preventing the

search from visiting the same points in the search space. But

in this problem, we insert only the added edge in each search

step into the tabu list. We do not tabu the max congested edge

and removed edge as in [12] because in MSTP, an edge can

Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011) 25

be used by different spanning trees.

3) Link Weight Generation: From the k spanning trees in

MST ∗ obtained by LSA4MSTP, we generate the k link weight

matrices of W ∗. For each VLAN Vi ∈ V , we assign a unit

cost to all the links in the spanning tree STi and by assigning

a weight of ni (number of nodes of Vi) to all the other links

in Vi. After this assignment, we can see that the weight of

the longest possible path between a pair of nodes in spanning

tree STi is n − 1 (passes n − 1 edges) while the cost of the

shortest path between any pair of nodes with out using of

spanning tree edges is n (passes one edge). Consequently, the

802.1s protocol [11] will produce exactly the k spanning trees

in MST ∗.

B. Speeding up the Search

1) Root Selection: Symmetry breaking [16] is a well-known

technique in Constraint Satisfaction Problems (CSPs) to speed

up the search. In [12], we showed that the root determination

does not change solution. By fixing a unique root for each

VLAN, we can eliminate all the symmetries in this problem.

The search space is reduced from (n.
(

m
n−1

)
)k to

(
m

n−1

)k
(with

n the number of nodes, m the number of links and k VLANs).

The choice of root can however influence the choice of the

neighborhood solution in each iteration and thus the balance of

the trees. Network operators normally configure the switches

with the highest capacity (ports x bandwidth) as the root

of their spanning trees. In our algorithm, we a priori select

the node with maximal sum of associated link capacities

(bandwidth) as the root.

2) Incremental Link Load Computation: Link load com-

putation is a computationally expensive task at iteration,

especially when the size of networks is large. In [12], we

proved that for each replacement of an edge (s0, t0) by another

edge (sI , tI), the load changes only on the links on the cycle

C created by adding (sI , tI) into the spanning tree. This

substabtially reduces the computation cost.

In our algorithm, spanning trees are represented using the

LS(Graph & Tree) framework [17]. With incremental data

structures (auto-update after each change of the tree), all

queries on spanning tree mentioned above can be performed

in time O(1) and the update action is performed in O(nv)
where nv is the number of vertices of the VLAN.

V. EXPERIMENTS AND EVALUATION

In this section, we first present two topologies coming from

the private enterprise and cloud data centers which are studied

in [18]. Second, we described the method for generating these

topologies, the traffic demand matrices and the VLANs for

our tests. Next, we analyze the obtained results and evaluate

the performance of our local search algorithm LSA4MSTP.

A. Data Center topologies

The extensive studies by Benson et al. [18] showed that

there are three main classes of data centers, namely university

campus data centers, private enterprise data centers and cloud

data centers. The statistics were collected from 10 data centers

in US and South America. In this work, we only consider the

large data centers of private enterprises and clouds containing

a few thousand to more than 10K servers. We choose to not

consider university campus data centers because their size is

often too small, containing only a few decades of switches.

As depicted in Fig 1, the private enterprise data center uses a

canonical 2 or 3-Tier Cisco architecture [19] while the cloud

data center uses the 3-Tier textbook data center architecture

in [22].

3-Tier Cisco architecture (Fig 1a) consists of core, ag-

gregation and edge (or access) tier. At the highest level, core

tier contains switches connecting the data center to extranet,

WAN or Internet. The aggregation tier consists of switches

connecting to many edge tier uplinks, and aggregating flows

going in and out of the data center. Core and aggregation

switches are usually equipped with 10 Gbps interfaces [19].

At the lowest level, edge tier consists of the racks. Each

rack contains 20-80 servers interconnected by a Top of Rack

switch (ToR). Each ToR switch has usually a small number

(4-8) of 10 Gbps uplinks and servers are attached to their

ToR switch through 1 Gbps links [19]. The 2-Tier Cisco

architecture is used in small data centers in which the core

tier and aggregation tier are merged into one tier.

Cloud data center architecture described in [22] (Fig 1b)

is an improvement of the canonical 3-Tier Cisco architecture.

In this topology, the core tier is replaced by an intermedia

tier to improve the performance of the aggregation layer. A

large number of 10GigE ports of each aggregation switch is

used that can provide a huge aggregate capacity. The links

of the intermediate and aggregation switches form a complete

bipartite graph [22]. Suppose each aggregation switch uses

k ports of 10 GigE, k/2 of these ports will connect to k/2
switches in the intermedia tier. The remaining k/2 ports of

each aggregation switch are used for connecting to the ToRs

in the edge tier. As in 3-Tier Cisco architecture, core and

aggregation switches are equipped with 10 Gbps interfaces

and ToRs have 4-8 interfaces of 10 Gbps and a large number

of 1Gbps links.

In our experiments, the number of servers per rack is fixed

to 20. Thus, each private enterprise data center with 4K servers

consists of 242 switches (200 ToRs + 40 aggregation switches

+ 2 core switches) and each cloud data center with 10K servers

contains 564 switches (500 ToRs + 32 aggregation switches +

32 intermedia switches).

B. Traffic demand matrices and VLANs generation

To obtain data sets that are representative of data centers, we

analyzed the SNMP data from [18] on a private enterprise (PR)

data center (53 switches). These data allowed us to synthesize

the traffic flow in the network by 10 minutes, 1 hour, 1 day and

1 week worth of data. Unfortunately, there is no information

related to VLANs composition and on traffic demand between

each pair of switches.

1) Traffic demand matrices: In spite of the fact that the

VLAN and traffic demand information is inaccessible, the

SNMP data from [18] is worthy to infer traffic demand

26 Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011)

(a) Private enterprise data center (b) Cloud data center

Fig. 1: Large data center topologies

matrices. The SNMP data captures the amount of traffic on

each link at a precise time. Therefore, we were able to retrieve

the total traffic entering or departing from each switch over

various time intervals. We use the simple gravity model [23]

relying on proportionality relationships to build the traffic

demand matrix. This method is developed for large-scale IP

networks but we assume that it is also appropriate for the

data center networks. The simple gravity model is defined as

follows:

TD[i, j] = TI(i, ∗) TO(∗,j)∑
k
TI(∗,k)

.

where TD[i, j] is the traffic amount switch i sends to switch

j. TI(i, ∗) represents the total traffic entering at switch i.
TO(∗, j) denotes the total traffic departing from switch j. And∑

k TI(∗, k) is the total amount of traffic departing of every

switch.

In these data centers, there is always a switch receiving a

large amount of traffic (20-40% total traffic). There are about

ten other switches receiving from 2 to 18% total traffic. For

the remaining switches, the traffic amount is less than 2%.

When we look at each line of the traffic demand matrices,

each switch has about ten ”big clients” with a demand from

2 to 30% of its total traffic volume.

For each time sample, we thus obtain a demand matrix.

For each demand matrix, we define SumTD =
∑

TD[i, j],
denoting the total amount of traffic demand. We compute

the ratio of traffic volume of each switch to total traffic:

%TD SW [i] =
∑

j
TD[i, j]/SumTD and the ratio of each

traffic demand element to total traffic demand of each switch:

%TD[i, j] = TD[i, j]/TD SW [i].

The obtained demand matrices will be used to generate the

traffic demand matrices of our VLANs. The traffic demand

of each of our VLAN will thus be considered as the demand

of a small private enterprise data center. For the number of

racks (ToRs) in each VLAN, we consider 40 ToRs for each

VLAN in cloud topologies (with 564 nodes) and 20 ToRs

for each VLAN in private topologies (with 242 nodes). Each

VLAN will then also contain the minimum of aggregation and

core/intermediate switches in order to cover the ToRs of the

VLAN. In our experiments, we consider three types of traffic

(a) Internal TM (b) Internet TM (c) Uniform TM

Fig. 2: Traffic demand matrix types

demand matrices for the VLANs.

• Internal TM: We here assume that all the traffic stays

within the VLAN and consists of discussions accross the

k racks (ToRs) of the VLAN. The demand matrix of the

VLAN is thus composed of zeros, except between these k
ToRs (Figure 2a). The traffic demand between the ToRs of

the VLAN is based on the obtained demand matrices on

a private enterprise data center (PR) presented above. We

first choose a target SumTD. Then, using %TD SW [i]
and %TD[i, j], we derive a demand matrix as follows.

The k ToRs of the VLAN are randomly assigned to k
different nodes of PR (the nodes of PR with the smallest

%TD SW [i] are not considered). Then, given a ToR of

the VLAN associated to node i of PR, its traffic demand

with the other k ToRs of the VLAN will be a random

permutation of the top k values of %TD[i, j]. These

values are then randomly assigned.

• Internet TM: This case extends the previous case by

considering traffic outside network, consisting of traffic

accross VLANs and traffic from/to Internet. The traffic

entering/leaving each VLAN is centralized at one or

two core switches (with an average of 1.5) for private

enterprise networks, and at two core switches for cloud

data centers. The traffic demand matrix will thus have

(one or) two other non zero lines and columns (as

described in Figure 2b), associated to these core switches.

We will assume that 20% of SumTD is interconnection

Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011) 27

traffic, and 80% of SumTD stays within the VLAN. The

traffic demand within the VLAN is obtained as described

above. The interconnection traffic is uniformly distributed

between all the switches.

• Uniform TM: This type of traffic will be used as a

reference for the experiments, with a uniform distribution

of the traffic demand between every pairs of switches

in the VLAN (see Figure 2c). The values in the matrix

are varied in a small interval. The value is chosen to

achieving the targeted SumTD.

2) VLANs generation: We rely on two approaches for

generating VLANs. In the first case, each VLAN is generated

geographically by grouping a set of neighboring racks that

are interconnected by the ToRs and a number of aggregation

and core (or intermedia) switches (i.e. the racks of servers in

the same or neighboring buildings). In the second case, we

assume that the racks are assigned randomly to the different

VLANs depending on their increasing need. For this reason,

each VLAN can contain a set of arbitrary racks.

In our experiments, for each data center topology, we

generated 16 VLANs for both geographic and random case.

The 16 VLANs are generated by combining the four time

samples (4 VLANs generated using each of the time sample).

We also ensured that the 16 VLANs cover all the switches.

In order to analyse the influence of the number of VLANs

on the performance of our algorithm, we merged the 16

VLANs, 2 by 2, in order to obtain a new test with 8 VLANs,

with an equivalent total traffic. Two VLANs can be merged if

they have at least one common switch (for the geographic case,

this common switch must be ToR). We repeated this process

to obtain tests with 4, 2 and a unique VLAN (containing all

the switches in the network).

C. Experiments

The different test sets are summarized in Table I. For each

topology type (private enterprise and cloud), we generated 10

topologies. For each topology, we combined two VLAN distri-

butions (Geographic and Random) with three traffic matrices

(Internal TM, Internet TM and Uniform TM). For each of

these 12 combinaisons, we generated 5 tests (16, 8, 4, 2 and

1 VLAN). We thus have 600 tests in our data sets. These data

sets are available online in [24]. The time window for running

LSA4MSTP for Private Enterprise and Cloud is 15 minutes.

D. Evaluation

As many traffic engineering studies in [4], [8], [12], we

consider the improvement of the maximal utilization Umax as

the criterion to evaluate the performance of LSA4MSTP. We

compare two different computations of Umax. The first one

is obtained with the solution of LSA4MSTP and second is

obtained with the default weights by the STP 802.1s standard.

With 802.1s, one spanning tree is computed for each VLAN

based on the least cost paths from every switch in VLAN to

an elected root switch (the switch with min ID - normally this

is one of the core switches). Because the network consists of

all 10 Gbps uplinks with the default cost of 2 [9], so the least

cost path strategy of 802.1s seems to be limited.

We measure the improvement in a test by the ratio between

Umax[LSA4MSTP] and Umax[802.1s]:

%Improve = Umax[LSA4MSTP]∗100
Umax[802.1s]

Figure 3 presents the Umax values for Cloud data centers.

LSA4MSTP always gives the best results for 16 VLANs, with

%Improve around 50% (about half of the Umax value given

by 802.1s). For 8 VLANs, this improvement is about 60%

in both geographic and random case. With 4, 2 and even 1

VLAN, LSA4MSTP also reduces Umax to about 70%-80% in

almost all the combinations. These results clearly show that

our LSA4MSTP algorithm provide better results than 802.1s.

We describe in Table II the %Improve results for Private

Enterprise data centers. We also observe that LSA4MSTP is

more efficient when the number of VLANs is large. For 16

VLANs with the original traffic matrices, LSA4MSTP gives

best performance with the uniform traffic matrices where there

is no zero-demand for every pair of source-destination. The

improvement is less important with the sparser traffic matrices

as the internal VLAN matrices. In summary, our LSA4MSTP

algorithm always provides better results than 802.1s. More-

over, the number of VLANs clearly further improves the

quality of the solution produced by LSA4MSTP.

TABLE II: Results for Private Enterprise data centers:

%Improve (in percent)

Combination 1 VL 2 VLs 4 VLs 8 VLs 16 VLs

Geographic/Internal TM 85.47 83.20 70.42 54.30 52.11

Geographic/Internet TM 87.67 83.04 73.67 52.43 51.26

Geographic/Uniform TM 88.97 83.05 80.51 62.13 42.46

Random/Internal TM 84.15 83.33 69.91 61.92 57.60

Random/Internet TM 83.36 75.63 70.25 58.54 52.19

Random/Uniform TM 88.03 80.77 78.17 62.85 42.02

TABLE III: %ΔLinks between LSA4MSTP and 802.1s (in

percent)

Topo 1 VLAN 2 VLANs 4 VLANs 8 VLANs 16 VLANs

PR 0 2.59 7.26 10.46 12.54

Cloud 0 0.71 2.05 2.79 3.41

Figure 4 shows the distribution of link utilization of the

solution provided by LSA4MSTP and by 802.1s on the

private enterprise topology (Internal TM/Geographic). With 16

VLANs, the 802.1s solution uses only 822 links for the packet

switching while LSA4MSTP uses 1008 links (we consider

both directions of a link). This distribution shows that the

high values of Umax in the 802.1s solution are concentrated

on few links. The LSA4MSTP solution, by using more links,

is able to reduce Umax from 0.66 to 0.37. For 8 VLANs,

the most congested links are only concentrated on very few

links (less than 1%) in the solutions given by 802.1s. The link

28 Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011)

TABLE I: Data generation for LSA4MSTP

Topo Topo. Type Num. Switches. Num. Servers Traffic Matrices VLAN distribution

Private Enterprise (PR) 3-Tier Cisco 242 4,000 Internal TM/Internet TM/Uniform TM Geographic/Random

Cloud VL2 564 10,000 Internal TM/Internet TM/Uniform TM Geographic/Random

Fig. 3: LSA4MSTP for Cloud data centers

utilization of the other links are similar in the two solutions.

This analysis can also be made on the other combinations with

4 and 2 VLANs where the congestion in the solutions obtained

with 802.1s is centralized in about 2 or 3 bottleneck links.

Fig. 4: Link utilization distribution

We now analyze the influence of the number of VLANs

on the number of used links. Let #Links[LSA4MSTP]
and #Links[802.1s] denote the number of links given by

the solution of LSA4MSTP and 802.1s. We compute the

percentage of links on the total number of available links

#Links in the network that LSA4MSTP uses more than

802.1s:

%ΔLinks = (#Links[LSA4MSTP]−#Links[802.1s])∗100
#Links

We present in Table III the value of %ΔLinks for each

topology type. In the solutions given by LSA4MSTP, the

spanning trees use more links than the ones obtained with

802.1s for all the combinations with more than 1 VLAN

where #Links[LSA4MSTP] and #Links[802.1s] are fixed

to n − 1 (with n the number of switches in the data center).

We can thus disjoin the VLAN spanning trees on the most

congested links. The value of %ΔLinks increases naturally

with the number of VLANs. This justifies why the best Umax

results are obtained with 16 VLANs.

We further refine our analysis by presenting in Table IV the

average number of links connecting Intermedia-Aggregation

(Int-AS) and Aggregation-Edge (AS-ToR) for Cloud data cen-

ters. For both 802.1s and LSA4MSTP solutions, the number

of used links Int-AS is very limited (always less than 100

links) comparing to the available links on this level (1024

links). Contrarily, the number of used links AS-ToR is growing

quickly with the number of VLANs (up to 71% of available

links on this level). Obviously, for the Cloud data centers

there are 500 ToRs and only 32 Aggregation switches +

32 Intermedia switches. In addition, 80% of the total traffic

amount is used for the traffic across racks. Our LSA4MSTP

algorithm always uses more links than 802.1s. It is interesting

to notice that LSA4MSTP can reduce 50% of Umax with only

63 more links for 16 VLANs.

Fig. 5: Improvement of Umax over execution time

Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011) 29

TABLE IV: Number of used links across tiers for Cloud data centers (LSA stands for LSA4MSTP)

1 VLAN 2 VLANs 4 VLANs 8 VLANs 16 VLANs

Links Available 802.1s LSA 802.1s LSA 802.1s LSA 802.1s LSA 802.1s LSA

Int-AS 1024 63 63 66 69 73 78 75 81 91 98

AS-ToR 1000 500 500 521 532 536 573 598 648 656 712

Total 2024 563 563 587 601 609 651 673 729 747 810

We finally describe in Figure 5 the improvement of the

LSA4MSTP solution over execution time, for a test of

Cloud with 16 VLANs/Uniform TM/Geographic. As expected,

LSA4MSTP reduces about 50% Umax of 802.1s (from 0.69

to 0.33) after only 10s. We can state that most of improved

solutions were found in the first 98s. In our experiments, the

solution found by LSA4MSTP in the first 5 minutes is often

very close to the best solution.

With the obtained results in our previous work in [12] with

Grid, Cube, Expanded Tree, Fat Tree and PortLand, our local

search algorithms give good performance with large instances

of network topology.

VI. CONCLUSION AND FUTURE WORK

The goal of this work is to give a new approach for the

traffic engineering problem for metropolitan networks where

Multiple Spanning Tree Protocol 802.1s is deployed. To cope

with large data centers with many VLANs, our algorithm

for single switched Ethernet network has been extended with

new adapting heuristics. We considered the current modern

topologies for large data centers containing up to 10K servers

in our experiments. The SNMP data of a private enterprise

in US has also been studied to create the traffic demand

matrices that are representative of data centers for our tests.

With regard to the load balancing aspect, our results show

much improvement in the use of network available bandwidth.

The solutions obtained with our algorithm could reduce up to

50% the maximal link utilization compared with the solution

obtained by 802.1s for the data centers with 16 VLANs.

Our further work is to extend our scheme to take into

account the delay and the fault tolerant aspect. We hope that

with this extended algorithm, data centers can become more

flexible and efficient in case of link or switch failures not

only for speeding up the slow convergence time but also for

achieving a high level of QoS.

ACKNOWLEDGEMENTS

We would like to thank T. Benson et al. for the precious data set.

Ho Trong Viet is supported by the FRIA (Fonds pour la formation à

la Recherche dans l’Industrie et dans l’Agriculture, Belgium). Pierre

Francois is supported by the FRNS (Fonds National de la Recherche

Scientifique, Belgium). This work was partly funded by CHANGE, a

research project funded by the European Commission in its Seventh

Framework program (Project 257422).

REFERENCES

[1] A. Meddeb, ”Multiple Spanning Tree Generation and Mapping Al-
gorithms for Carrier Class Ethernet”, in Proceedings of the IEEE

GLOBECOM Conference, 2006.

[2] Xiaoming He, Mingying Zhu, and Qingxin Chu, ”Traffic Engineering
for Metro Ethernet Based on Multiple Spanning Trees”, in Proceedings

of the International Conference ICNICONSMCL, 2006.
[3] Y. Lim, H. Yu, S. Das, S. S. Lee, M. Gerla, ”QoS-aware Multiple

Spanning Tree Mechanism over a Bridged LAN Environment”, in
Proceedings of the IEEE GLOBECOM Conference, 2003

[4] D. Santos, et al., ”Traffic Engineering of Multiple Spanning Tree Routing
Networks: the Load Balancing case”, in Proceedings of the 5th Euro-

NGI conference on Next Generation Internet networks, 2009.
[5] W. Chen, D. Jin, L. Zeng, ”Design of Multiple Spanning Trees for Traffic

Engineering in Metro Ethernet”, in Proceedings of the International

Conference on Communication Technology ICCT, 2006.
[6] G. Mirjalily, F. A. Sigari, R. Saadat, ”Best Multiple Spanning Tree in

Metro Ethernet Networks”, in Proceedings of the Second International

Conference on Computer and Electrical Engineering, 2009.
[7] M. Padmaraj , et al., ”Metro Ethernet traffic engineering based on opti-

mal multiple spanning trees”, in Wireless and Optical Communications

Networks, 2005.
[8] Bernard Fortz, and Mikkel Thorup, ”Internet Traffic Engineering By

Optimizing OSPF Weights,” in IEEE INFOCOM, 2000.
[9] IEEE Standard 802.1D, ”Information technology-Telecommunications

and information exchange between systems-Local and metropolitan area
networks-Common specifications-Part 3: Media Access Control (MAC)
Bridges”, 1998.

[10] IEEE Standard 802.1W, ”Rapid spanning tree configuration”, 2001.
[11] IEEE Standard 802.1S, ”Virtual Bridged Local Area Networks - Amend-

ment 3: Multiple Spanning Trees”, 2002
[12] T. V. Ho, O. Bonaventure, Y. Deville, Q. D. Pham, and P. Francois,

”Using Local Search for Traffic Engineering in Switched Ethernet
Networks”, in Proceedings of the 22

th ITC Conference, Amsterdam,
The Netherlands, 2010.

[13] P. V. Hentenryck, and L. Michel, ”Constraint-based Local Search,” MIT

Press, 2005.
[14] Krysztof R. Apt, ”Principles of Constraint Programming”, Cambridge

University Press, 2003.
[15] Glover, F., M. Laguna, ”Tabu Search,” Kluwer Acadenic Publishers,

Norwell, MA, 1997.
[16] I. Gent, and B. Smith, ”Symmetry breaking in constraint programming,”

in Proc. ECAI00, 2000.
[17] Q. D. Pham, Y. Deville, and P. V. Hentenryck, ”LS(graph & tree): a local

search framework for constraint optimization on graphs and trees,” in
Proceedings of the 2009 ACM Symposium on Applied Computing (SAC),
2009.

[18] T. Benson, Aditya Akella, and David A. Maltz, ”Network Traffic
Characteristics of Data Centers in the Wild,” in Proceedings of the

Internet Measurement Conference (IMC), Melbourne, Australia, Nov
2010.

[19] Cisco Systems, ”Cisco data center infrastructure 2.5 design guide”,
http://www.cisco.com/univercd/cc/td/doc/solution/dcidg21.pdf

[20] T. Benson, A. Anand, A. Akella, and M. Zhang, ”Understanding Data
Center Traffic Characteristics, ” in Proceedings of Sigcomm Workshop:

Research on Enterprise Networks, 2009.
[21] S. Kandula et al., ”The Nature of Data Center Traffic: Measurements

and Analysis, ” in the Internet Measurement Conference, 2009.
[22] Albert Greenberg, et al., ”VL2: A Scalable and Flexible Data Center

Network, ” in Proceedings of SIGCOMM 2009.
[23] Y. Zhang, M. Roughan, N. Duffield, A. Greenberg, ”Fast Accurate

Computation of Large-Scale IP. Traffic Matrices from Link Loads, ”
in ACM SIGMETRICS, 2003.

[24] Ho et al., ”Traffic Engineering for Multiple Spanning Tree
Protocol in Large Data Centers”, http://becool.info.ucl.ac.be/page/
traffic-engineering-multiple-spanning-tree-protocol-large-data-centers.

30 Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

